Cell adhesion defines the topology of endocytosis and signaling.

نویسندگان

  • Jean-Philippe Grossier
  • Georgia Xouri
  • Bruno Goud
  • Kristine Schauer
چکیده

Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an "outside-in" mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells

Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...

متن کامل

A direct interaction between the large GTPase dynamin-2 and FAK regulates focal adhesion dynamics in response to active Src

Tumor cell migration is supported in part by the cyclic formation and disassembly of focal adhesions (FAs); however, the mechanisms that regulate this process are not fully defined. The large guanosine 5'-triphosphatase dynamin (Dyn) plays an important role in FA dynamics and is activated by tyrosine phosphorylation. Using a novel antibody specific to phospho-dynamin (pDyn-Tyr-231), we found th...

متن کامل

PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion.

Vertebrate segmentation is characterized by the periodic formation of epithelial somites from the mesenchymal presomitic mesoderm (PSM). How the rhythmic signaling pulse delivered by the segmentation clock is translated into the periodic morphogenesis of somites remains poorly understood. Here, we focused on the role of paraxial protocadherin (PAPC/Pcdh8) in this process. We showed that in chic...

متن کامل

Investigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach

Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...

متن کامل

Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion

Leukocyte trafficking is crucial to facilitate efficient immune responses. Here, we report that the large GTPase dynamin2, which is generally considered to have a key role in endocytosis and membrane remodeling, is an essential regulator of integrin-dependent human T lymphocyte adhesion and migration. Chemical inhibition or knockdown of dynamin2 expression significantly reduced integrin-depende...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2014